1,208 research outputs found

    High Resolution Near-Infrared Spectra of Protostars

    Get PDF
    We present new high resolution (R = 21,000) near-infrared (2 microns) spectroscopic observations of a sample of Class I and flat-spectrum protostellar objects in the rho Ophiuchi dark cloud. None of the five Class I spectra show CO v = 0 -- 2 absorption features, consistent with high K-band continuum veilings, 4 <= r_k <= 20 and fast stellar rotation, assuming that the underlying protostellar photospheres are of late spectral type, as is suggested by the low luminosities of most of these objects. Two of the flat-spectrum protostellar objects also show no absorption features and are likely to be highly veiled. The remaining two flat-spectrum sources show weak, broad absorptions which are consistent with an origin in quickly rotating (v sin i ~ 50 km / s) late-type stellar photospheres which are also strongly veiled, r_k = 3 - 4. These observations provide further evidence that: 1)-Class I sources are highly veiled at near-infrared wavelengths, confirming previous findings of lower resolution spectroscopic studies; and 2)- flat-spectrum protostars rotate more rapidly than classical T Tauri stars (Class II sources), supporting findings from a recent high resolution spectroscopic study of other flat-spectrum sources in this cloud. In addition our observations are consistent with the high rotation rates derived for two of the Class I protostellar objects in our sample from observations of variable hard X-ray emission obtained with the ASCA satellite. These observations suggest that certain Class I sources can rotate even more rapidly than flat-spectrum protostars, near breakup velocity.Comment: 16 pages including 2 tables and 2 figures (AASTeX 5.x) to be published in The Astronomical Journal July 200

    Using Chemistry to Unveil the Kinematics of Starless Cores: Complex Radial Motions in Barnard 68

    Full text link
    We present observations of 13CO, C18O, HCO+, H13CO+, DCO+ and N2H+ line emission towards the Barnard 68 starless core. The line profiles are interpreted using a chemical network coupled with a radiative transfer code in order to reconstruct the radial velocity profile of the core. Our observations and modeling indicate the presence of complex radial motions, with the inward motions in the outer layers of the core but outward motions in the inner part, suggesting radial oscillations. The presence of such oscillation would imply that B68 is relatively old, typically one order of magnitude older than the age inferred from its chemical evolution and statistical core lifetimes. Our study demonstrates that chemistry can be used as a tool to constrain the radial velocity profiles of starless cores.Comment: 12 pages, 3 figures, to appear in the Astrophysical Journal Letter

    A comprehensive set of simulations studying the influence of gas expulsion on star cluster evolution

    Full text link
    We have carried out a large set of N-body simulations studying the effect of residual-gas expulsion on the survival rate and final properties of star clusters. We have varied the star formation efficiency, gas expulsion timescale and strength of the external tidal field, obtaining a three-dimensional grid of models which can be used to predict the evolution of individual star clusters or whole star cluster systems by interpolating between our runs. The complete data of these simulations is made available on the Internet. Our simulations show that cluster sizes, bound mass fraction and velocity profile are strongly influenced by the details of the gas expulsion. Although star clusters can survive star formation efficiencies as low as 10% if the tidal field is weak and the gas is removed only slowly, our simulations indicate that most star clusters are destroyed or suffer dramatic loss of stars during the gas removal phase. Surviving clusters have typically expanded by a factor 3 or 4 due to gas removal, implying that star clusters formed more concentrated than as we see them today. Maximum expansion factors seen in our runs are around 10. If gas is removed on timescales smaller than the initial crossing time, star clusters acquire strongly radially anisotropic velocity dispersions outside their half-mass radii. Observed velocity profiles of star clusters can therefore be used as a constraint on the physics of cluster formation.Comment: 12 pages, 9 figures, MNRAS accepte

    Can Cascades be Predicted?

    Full text link
    On many social networking web sites such as Facebook and Twitter, resharing or reposting functionality allows users to share others' content with their own friends or followers. As content is reshared from user to user, large cascades of reshares can form. While a growing body of research has focused on analyzing and characterizing such cascades, a recent, parallel line of work has argued that the future trajectory of a cascade may be inherently unpredictable. In this work, we develop a framework for addressing cascade prediction problems. On a large sample of photo reshare cascades on Facebook, we find strong performance in predicting whether a cascade will continue to grow in the future. We find that the relative growth of a cascade becomes more predictable as we observe more of its reshares, that temporal and structural features are key predictors of cascade size, and that initially, breadth, rather than depth in a cascade is a better indicator of larger cascades. This prediction performance is robust in the sense that multiple distinct classes of features all achieve similar performance. We also discover that temporal features are predictive of a cascade's eventual shape. Observing independent cascades of the same content, we find that while these cascades differ greatly in size, we are still able to predict which ends up the largest

    The impact of mass loss on star cluster formation. I. Analytic results

    Full text link
    We study analytically the disruptive effect of instantaneous gas removal from a cluster containing O stars. We setup an iterative calculation based on the stellar velocity distribution function to compute the fraction of stars that remain bound once the cluster has ejected the gas and is out of equilibrium. We show that the stellar bound fraction is a function of the initial cluster distribution function as well as the star formation efficiency, ϵ\epsilon, taken constant throughout the cluster. The case of the Plummer sphere is dealt with in greater details. We find for this case that up to ~ 50% of the stars may remain bound when ϵ\epsilon assumes values < 1/2, contrary to expectations derived from the virial theorem. The fraction of bound stars is expressed algebraically for polytropic distribution functions.Comment: to appear in M

    Spitzer observations of NGC2264: The nature of the disk population

    Full text link
    NGC2264 is a young cluster with a rich circumstellar disk population which makes it an ideal target for studying the evolution of stellar clusters. Our goal is to study its star formation history and to analyse the primordial disk evolution of its members. The study presented is based on data obtained with Spitzer IRAC and MIPS, combined with deep NIR ground-based FLAMINGOS imaging and previously published optical data. We build NIR dust extinction maps of the molecular cloud associated with the cluster, and determine it to have a mass of 2.1x10^3Msun above an Av of 7mag. Using a differential K_s-band luminosity function of the cluster, we estimate the size of its population to be 1436±\pm242 members. The star formation efficiency is ~25%. We identify the disk population: (i) optically thick inner disks, (ii) anaemic inner disks, and (iii) disks with inner holes, or transition disks. We analyse the spatial distribution of these sources and find that sources with thick disks segregate into sub-clusterings, whereas sources with anaemic disks do not. Furthermore, sources with anaemic disks are found to be unembedded (Av<3mag), whereas the clustered sources with thick disks are still embedded within the parental cloud. NGC2264 has undergone more than one star-forming event, where the anaemic and extincted thick disk population appear to have formed in separate episodes. We also find tentative evidence of triggered star-formation in the Fox Fur Nebula. In terms of disk evolution, our findings support the emerging disk evolution paradigm of two distinct evolutionary paths for primordial optically thick disks: a homologous one where the disk emission decreases uniformly at NIR and MIR wavelengths, and a radially differential one where the emission from the inner region of the disk decreases more rapidly than from the outer region (forming transition disks).Comment: accepted for publishing in A&

    Pholidosis Abnormalities and Injuries in the European Pond Turtle (Emys orbicularis) in the Conditions of the Khopersky Nature Reserve

    Get PDF
    Pholidosis abnormalities and injuries were studied through 194 specimens of European pond turtle (Emys orbicularis) in the Khopersky nature reserve (Voronezh Province, Russia) in 2008, 2009 and 2011. Six types of abnormalities (on the carapace only) were detected. The occurrence of individuals with all types of abnormalities, the partial occurrence of various abnormalities and the average number of abnormalities per individual were analyzed. Most individuals showed signs of predator attack, mostly on the carapace and tail. During winter hibernation, animals with limb injuries were noted

    The Luminosity & Mass Function of the Trapezium Cluster: From B stars to the Deuterium Burning Limit

    Get PDF
    We use the results of a new, multi-epoch, multi-wavelength, near-infrared census of the Trapezium Cluster in Orion to construct and to analyze the structure of its infrared (K band) luminosity function. Specifically, we employ an improved set of model luminosity functions to derive this cluster's underlying Initial Mass Function (IMF) across the entire range of mass from OB stars to sub-stellar objects down to near the deuterium burning limit. We derive an IMF for the Trapezium Cluster that rises with decreasing mass, having a Salpeter-like IMF slope until near ~0.6 M_sun where the IMF flattens and forms a broad peak extending to the hydrogen burning limit, below which the IMF declines into the sub-stellar regime. Independent of the details, we find that sub-stellar objects account for no more than ~22% of the total number of likely cluster members. Further, the sub-stellar Trapezium IMF breaks from a steady power-law decline and forms a significant secondary peak at the lowest masses (10-20 times the mass of Jupiter). This secondary peak may contain as many as \~30% of the sub-stellar objects in the cluster. Below this sub-stellar IMF peak, our KLF modeling requires a subsequent sharp decline toward the planetary mass regime. Lastly, we investigate the robustness of pre-main sequence luminosity evolution as predicted by current evolutionary models, and we discuss possible origins for the IMF of brown dwarfs.Comment: 74 pages, 30 figures, AASTeX5.0. To be published in the 01 July 2002 ApJ. For color version of figure 1 and online data table see http://www.astro.ufl.edu/~muench/PUB/publications.htm

    Spectroscopic Detection of a Stellar-like Photosphere in an Accreting Protostar

    Get PDF
    We present the first spectrum of a highly veiled, strongly accreting protostar which shows photospheric absorption features and demonstrates the stellar nature of its central core. We find the spectrum of the luminous (L_bol = 10 L_sun) protostellar source, YLW 15, to be stellar-like with numerous atomic and molecular absorption features, indicative of a K5 IV/V spectral type and a continuum veiling r_k = 3.0. Its derived stellar luminosity (3 L_sun) and stellar radius (3.1 R_sun) are consistent with those of a 0.5 M_sun pre-main-sequence star. However, 70% of its bolometric luminosity is due to mass accretion, whose rate we estimate to be 1.6 E-6 M_sun / yr onto the protostellar core. We determine that excess infrared emission produced by the circumstellar accretion disk, the inner infalling envelope, and accretion shocks at the surface of the stellar core of YLW 15 all contribute signifi- cantly to its near-IR continuum veiling. Its projected rotation velocity v sin i = 50 km / s is comparable to those of flat-spectrum protostars but considerably higher than those of classical T Tauri stars in the rho Oph cloud. The protostar may be magnetically coupled to its circumstellar disk at a radius of 2 R_*. It is also plausible that this protostar can shed over half its angular momentum and evolve into a more slowly rotating classical T Tauri star by remaining coupled to its circumstellar disk (at increasing radius) as its accretion rate drops by an order of magnitude during the rapid transition between the Class I and Class II phases of evolution. The spectrum of WL 6 does not show any photospheric absorption features, and we estimate that its continuum veiling is r_k >= 4.6. Together with its low bolometric luminosity (2 L_sun), this dictates that its central core is very low mass, ~0.1 M_sun.Comment: 14 pages including 9 figures (3 figures of 3 panels each, all as separate files). AASTeX LaTex macros version 5.0. To be published in The Astronomical Journal (tentatively Oct 2002
    corecore